Strona startowa Ludzie pragnÄ… czasami siÄ™ rozstawać, żeby móc tÄ™sknić, czekać i cieszyć siÄ™ z powrotem.¬---------------{t_lucretius_carus} Lukrecjusz{t_lucretius_carus_desc}Wiedza o naturze i jej aspektach, jak równie| swoboda w poezji, czyni z tego przedstawiciela epikureizmu miBego towarzysza dla my[lcego czBowieka¬****************************************************************************************¬****************************************************************************************¬*¬***** Changes made after 01/03/2004 5:11:34 PM¬*¬****************************************************************************************¬****************************************************************************************¬****************************************************************************************¬****************************************************************************************¬*¬***** Changes made after 21/04/2004 9:00:00 AM¬*¬****************************************************************************************¬****************************************************************************************{actor_effects_desc}WpBywy +1{aged_retainer_effects_desc}Zarzdzanie +1, +1 do osobistego bezpieczeDstwa (zwiksza szanse odkrycia i zapobiegnicia próbie zabójstwa){agriculturalist_effects_desc}+1 do produkcji rolniczej{animal_trader_effects_desc}WpBywy +1{architect_effects_desc}10% zni|ki do kosztów budowy, -1 do ndzy (zwiksza porzdek publiczny i wzrost populacji){armourer_effects_desc}+1 do morale dla wszystkich |oBnierzy na polu bitwy{artist_effects_desc}WpBywy +1, 10% zni|ki do kosztów Bapówki{astrologer_effects_desc}Dowodzenie +1, Zarzdzanie -1¬---------------{barbarian_slave} BarbarzyDski niewolnik{barbarian_slave_desc}"Drobna pamitka z podró|y za granicPÅ‚aski-stan-naprężenia-o-taki-stan PÅ‚aski stan naprężenia o taki stan, dla którego wszystkie jego skÅ‚adowe leżą w jednej pÅ‚aszczyźnie, np...¬****************************************************************************************¬*¬***** Changes made after 07/07/2004 5:15:00 PM¬*¬****************************************************************************************¬****************************************************************************************¬--------------------{Glutton} Ob|artuch{Glutton_desc}Kiedy padnie pytanie: "Dla kogo najwikszy placek?", ten czBowiek bez cienia przyzwoito[ci przystpuje do paBaszowania ciasta! Zawsze znajdzie si kto[, kto za to wszystko zapBaciMASKA 21 ? KONRAD I nie obra¿ê niczym uczuæ s¹siada, i oka bliŸniego nie obra¿ê - a nasycê serce moje i zmys³y moje wszystkie nasycê...swiadkowie bozego milosierdzia- Ostatnim etapem mojego planu jest wylanie mojego miÅ‚osierdzia na was wszystkich...tereny, których powietrze zawiera chemikalia b±d¼ py³y metali albo kurz pochodz±cy z ziaren ro¶lin zbo¿owych, a tak¿e wszystkie inne miejsca, w których...— Mieszka tam moja siostra z rodzinÄ… — wyjawiÅ‚ mi — ale wszystko jest moje...Profilaktyka zaburzeñ emocjonalnych to przede wszystkim uczenie dziecka róŸnych sposobów radzenia sobie w sytuacjach trudnych, a nie tylko ochrona dziecka przed...Dzisiaj jednak uniformizacja kultury w skali globalnej dokonuje siÄ™ bardziej pokojowo, wzory kulturowe przenoszÄ… siÄ™ przede wszystkim za poÅ›rednictwem mass...Wszystkich pracowników przytrzymywaÅ‚a w pracy jedynie nadzieja otrzymania nowego, lub w miarÄ™ nowego sprzÄ™tu, który pozwoliÅ‚by na prowadzenie normalnej...
 

Ludzie pragną czasami się rozstawać, żeby móc tęsknić, czekać i cieszyć się z powrotem.

Mamy wtedy do czynienia z klasyczn¸a definicj¸a prawdopodobie ństwa. W tej ksi¸ażce b¸edziemy najcz¸eściej używać klasycznej definicji, a w razie odst¸epstwa od tej umowy, b¸edziemy to specjalnie zaznaczać.

Definicja 1.5 Rozkład prawdopodobieństwa, w którym każde zdarzenie elementarne ma takie samo prawdopodobieństwo

'
-


.
.
nazywamy rozkładem jednostajnym.
Przykład 1.6
a) Dla rzutu dwoma monetami (przykład 1.1b możemy określić prawdopodobieństwo według klasycznej definicji: mamy wtedy
',-

#
'
-

5
'
-

#
'
-






6
Rozdział 1. Rachunek prawdopodobie ństwa
Ale oczywiście funkcja prawdopodobieństwa może być dowoln¸a funkcj¸a spełniaj¸ac¸a warunki A4 i A5. Na przykład
'
-

#
'
-



$
'
-
5" #
'
-
5





lub
'
-


5
', -

$
'
-


5
'
-





.
b) W przykładzie 1.2a, ze zbiorem wszystkich liter w tekście, prawdopodobieństwo może być zdefiniowane jako cz¸estości wyst¸epowania poszczególnych liter w tym tekście. Na podstawie cz¸estości wyst¸epowania liter można zgadywać w jakim j¸ezyku napisany jest tekst. Podobnie można rozpatrywać cz¸estość wyst¸epowania słów w tekście i na tej podstawie zgadywać autorstwo tekstu.
W nast¸epuj¸acym twierdzeniu zebrano kilka prostych wniosków wynikaj¸acych z aksjomatów prawdopodobie ństwa.
'
-



Twierdzenie 1.7 a)










'
-
1
'
-
'

-

'
-

'
-





b) Jeżeli
, to
oraz






'
-

'
-

'
-

'
-




c)





'
-
1
'
-

'
-




d)
Dowód:

'
-

'
-

'
-

'
-




a) Z aksjomatu A3 mamy
, a 0 jest jedyn¸a liczb¸a







spełniaj¸ac¸a równość
.















'

-
'

-

b) Jeżeli
, to
oraz
, a wi¸ec z aksjomatu A3






'
-

'

-

'
-

'
-





















'

'
--
'

'
--


c) Mamy
oraz
a wi¸ec z aksjomatu













'
-/
'
-

'

'
--



A3
, a ponieważ
, z wniosku 1.7b






'
'
--

'
-

'
-



mamy
d) wynika bezpośrednio z c).

Przykład 1.8 (kontynuacja przykładu 1.3d) z czteroma monetami). Jeżeli założymy rozkład jednostajny, to prawdopodobieństwo że na pierwszej i trzeciej monecie wypadł orzeł

wynosi
, a prawdopodobieństwo, że na pierwszej i trzeciej monecie wypadnie to samo


wynosi
.

Podobnie w przypadku, gdy rzucamy
monetami (przykład 1.1g). Przestrzeń



zdarz¸e elementarnych zawiera
ci¸agów, z czego
sprzyja zdarzeniu, że na pierw-

szej i trzeciej monecie wypadnie orzeł, a
sprzyja zdarzeniu, że na pierwszej i trzeciej
monecie jest to samo. Tak wi¸ec otrzymamy takie same prawdopodobieństwa jak w przypadku rzutu czteroma monetami.
1.3. Prawdopodobie ństwo warunkowe i zdarzenia niezależne 7









Twierdzenie 1.9 Niech
b¸edzie rodzin¸a parami rozł¸acznych zdarzeń (




)
+
dla każdej pary indeksów
). Wtedy









'
3-






Dowód przez indukcj¸e:

Dla
twierdzenie zachodzi w sposób trywialny.
Załóżmy, że twierdzenie jest prawdziwe dla dowolnej rodziny
zbiorów. Rozpatrzmy





















Ponieważ













z aksjomatu A3 i z założenia indukcyjnego wynika














6


'
-


'
3-

'
-


'
,-


























Twierdzenie 1.10 Dla dowolnej rodziny zbiorów
(niekoniecznie parami rozł¸acznych)


mamy








1
'
-








Dowód przez indukcj¸e: Dla
twierdzenie zachodzi w sposób trywialny. Załóżmy,
że twierdzenie jest prawdziwe dla dowolnej rodziny
zbiorów. Z twierdzenia 1.7c i z
założenia indukcyjnego mamy


















1

'
-
1
'
-






















1.3 Prawdopodobie Å„stwo warunkowe i zdarzenia nieza-
leżne

Definicja 1.11 Prawdopodobieństwo warunkowe zajścia zdarzenia pod warunkiem, że



'
.
-

zaszło zdarzenie
oznaczane przez
określamy jako



'
-



'
.
-




'
-


'
-


Ma to sens tylko wtedy gdy
.

8
Rozdział 1. Rachunek prawdopodobie ństwa

Możemy powiedzieć, że jest to prawdopodobie ństwo zajścia zdarzenia w sytuacji, gdy

mamy pewność, że zaszło zdarzenie
. Przy klasycznej definicji, gdy prawdopodobie Å„-


'
.
-

stwo oznacza cz¸estość wyst¸apienia, to prawdopodobie ństwo
oznacza jaka cz¸eść


elementów zbioru
należy do zbioru
.






'
-

'
.
-
'
-



Wniosek 1.12 .




'
.
-

'
-


Jeżeli
, to mówimy, że zdarzenie
jest niezależne od zdarzenia



. W takim przypadku zajście zdarzenia
nie zależy od tego, czy zaszło zdarzenie
.



Jeżeli
i
s¸a zdarzeniami o niezerowych prawdopodobie ństwach i
jest niezależne









'
.
-

'
-
'
-




od
, to
jest niezależne od
. Rzeczywiście
poci¸aga


'
-
'
-


, a to poci¸aga



'
-




'
-


'
.
-




'
-



Dlatego można mówić, że w takim przypadku zdarzenia
i
s¸a niezależne.